

Tested

Potency - 11

		-				(LCUV)
	Specimen Weight: 1	13.300 mg				(1001)
Analyte	Dilution (1:n)	LOD (%)	LOQ (%)	Result (mg/g)	(%)	
CBD	1000.000	0.000054	0.001	122.230	12.223	
CBC	1000.000	0.000018	0.001	2.620	0.262	l
Delta-9 THC	1000.000	0.000013	0.001	1.320	0.132	
CBDV	1000.000	0.000065	0.001	1.060	0.106	
CBG	1000.000	0.000248	0.001	0.790	0.079	
CBN	1000.000	0.000014	0.001	0.240	0.024	
Delta-8 THC	1000.000	0.000026	0.001		<loq< td=""><td></td></loq<>	
CBGA	1000.000	0.00008	0.001		<loq< td=""><td></td></loq<>	
THCV	1000.000	0.000007	0.001		<loq< td=""><td></td></loq<>	
CBDA	1000.000	0.00001	0.001		<loq< td=""><td></td></loq<>	
THCA-A	1000.000	0.000032	0.001		<loq< td=""><td></td></loq<>	

Potency Summary							
Total THC			Total CBD				
0.132%		37.500mg	12.223%	3,472.550mg			
Total CBG			Total CBN				
0.079%		22.440mg	0.024%	6.820mg			
Other Cannabinoids			Total Cannabinoids				
0.368%		104.550mg	12.826%	3,643.870mg			

(77 an Xueli Gao

Lab Toxicologist Lab Director/Principal Scientist Aixia Sun

D.H.Sc., M.Sc., B.Sc., MT (AAB)

Ph.D., DABT

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total CBD = CBD + (CBDVA * 0.877), *Total THC = THCV + (THCVA * 0.877), *Total THC = THCV + (THCVA * 0.87), *CBG Total = (CBCA * 0.877) + CBG, *CBN Total = (CBNA * 0.877) + CBN, *Total CBC = CBC + (CBCA * 0.877), *Total THC - 0-Acetate = Delta 8 THC-0-Acetate + Delta 9 THC- *CBT + Delta 8 THC-0 + Cetate = Delta 8 THC-0 - Acetate + Delta 9 THC - 0-Acetate = Delta 8 THC - 0-Acetate + Delta 9 THC - 0-Acetate = Delta 8 THC - 0-Acetate + Delta 9 THC - 0-Acetate = Delta 8 THC - 0-Acetate + Delta 9 THC - 0-Acetate = Delta 8 THC - 0-Acetate + Delta 9 THC - 0-Acetate = Delta 8 THC - 0-Acetate + 0.877 + Delta 8 THC + Total CBC + Total CBC + Total THC + 0.501 THC + 0.501 THC + Total CBC + Total CBD + 0.501 THC + 0.501 THC + 701 CBC + 0.501 THC + 70

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

	CS CANNABIS &			3000mg FS/Isolate Tincture Sample Matrix:	
721 Co Sun Ci	ortaro Dr. ty Center, FL 33573 slabcannabis.com			CBD/HEMP Derivative Products (Ingestion)	
DEA No. RA0571996 FL License # CMTL-0003 CLIA No. 10D1094068 VIOBIN USA 226 W. LIVINGSTON ST MONTICELLO, IL 61856		Certificate			
		Batch # T0322-07, T0322-08, T0322-09 Batch Date: 2022-03-15 Extracted From: NA	Test Reg State: Colorado	Production Facility: Viobin Production Date: 2022-03-15	
Order Da	/IO220315-010001 te: 2022-03-15 # AACO915	Sampling Date: 2022-03-16 Lab Batch Date: 2022-03-16 Completion Date: 2022-03-19	Initial Gross Weight: 81.112 g Net Weight: 28.024 g	Number of Units: 1 Net Weight per Unit: 28.41	0 g
Dilution Fac	Moisture Net Weight: 28.024 g	Tested (Moisture Meter)			
Analyte Moisture		Action Limit Result (%) (%) NA 1.510			
dr	Mi Gran	Ainci =			
Xueli Gao Ph.D., DAB1	Lab Toxicologi F	ist Aixia Sun Lab Director/Principal Scientist D.H.Sc., M.Sc., B.Sc., MT (AAB)			
ISO 17025	PIA Foling	Definitions and Abbreviations used in this report: *To 9 THC, *Total THCV = THCV + (THCVA * 0.87), *CB *Total THC-0-Acetate = Delta 8 THC-0-Acetate + De summary section, *Total Detected Cannabinoids = D + Total CBDV + Delta10-THC + Total THC-0-Acetate, (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Q Colony Forming Unit per Gram (cfu/g) = Colony Form (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg)	G Total = (CBGA * 0.877) + CBG, *CBN Total ita 9 THC-O-Acetate, *Other Cannabinoids Tr ita8-THC + Total CBN + CBT + Delta8-THCV *Analyte Details above show the Dry Weight uantitation, LOD = Limit of Detection, Dilutior ing Unit per Gram, , LOD = Limit of Detection	= (CBMA * 0.877) + CBN, * Total CBC = CBC + (total = Total Cannabinoids - All the listed cannab + Total CBC + Total CBD + Total THCV + CBL + T Concentrations unless specified as 12% moistu = Dilution Factor (ppb) = Parts per Billion, (%) (, (µg/g) = Microgram per Gram (ppm) = Parts	CBCA * 0.877), inoids on the fotal THC + Total CBC ure concentration. = Percent, (cfu/g) =
DEA REDISTERED LA IRADS719		This report shall not be reproduced, without writ analyzed. Test results are confidential unless e laboratory pursuant to ISO/IEC 17025 of the Int	xplicitly waived otherwise. Accredited by	a third-party accrediting body as a compe	

Page 2 of 2